Black carbon aerosol size in snow
نویسندگان
چکیده
The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.
منابع مشابه
Source attribution of black carbon in Arctic snow.
Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbo...
متن کاملArctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM
The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1) now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We inve...
متن کاملPresent-day climate forcing and response from black carbon in snow
[1] We apply our Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled to a general circulation model with prognostic carbon aerosol transport, to improve understanding of climate forcing and response from black carbon (BC) in snow. Building on two previous studies, we account for interannually varying biomass burning BC emissions, snow aging, and aerosol scavenging by snow meltwater. We ass...
متن کاملBlack-carbon reduction of snow albedo
Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1,2. In this study, we generated and characterized pure and black-carbonladen snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings...
متن کاملNumerical analysis of thermal-hydraulic properties of turbulent aerosol-carbon black nanofluid flow in corrugated solar collectors with double application
In this study the effects of corrugated absorber plate and using aerosol-carbon black nanofluid on heat transfer and turbulent flow in solar collectors with double application and air heating collectors, were numerically investigated. The two-dimensional continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. In the present investigation all the simulations w...
متن کامل